Functional quantile regression (FQR) is a useful alternative to mean regression for functional data as it provides a comprehensive understanding of how scalar predictors influence the conditional distribution of functional responses. In this article, we study the FQR model for densely sampled, high-dimensional functional data without relying on parametric error or independent stochastic process assumptions, with the focus being on statistical inference under this challenging regime along with scalable implementation. This is achieved by a simple but powerful distributed strategy, in which we first perform separate quantile regression to compute $M$-estimators at each sampling location, and then carry out estimation and inference for the entire coefficient functions by properly exploiting the uncertainty quantification and dependence structures of $M$-estimators. We derive a uniform Bahadur representation and a strong Gaussian approximation result for the $M$-estimators on the discrete sampling grid, leading to dimension reduction and serving as the basis for inference. An interpolation-based estimator with minimax optimality and a Bayesian alternative to improve upon finite sample performance are discussed. Large sample properties for point and simultaneous interval estimators are established. The obtained minimax optimal rate under the FQR model shows an interesting phase transition phenomenon that has been previously observed in functional mean regression. The proposed methods are illustrated via simulations and an application to a mass spectrometry proteomics dataset.


翻译:功能孔径回归(FQR)是替代功能数据平均值回归的有用替代方法,因为它能全面理解卡路里预测值如何影响功能响应的有条件分布。在本条中,我们研究FQR模型用于密集抽样、高维功能数据,而不必依靠偏差或独立的随机过程假设,重点是在这一具有挑战性的制度下统计推论,同时采用可伸缩的实施工作。这是通过简单而有力的分布式战略实现的,在这种战略中,我们首先进行独立的量化回归,在每个取样地点计算$M$的估量器,然后通过适当利用美元估算和依赖性结构来估计和推断整个系数函数。我们不依赖于参数误差、高维度数据模型。我们得出统一的巴哈杜尔代表性和强烈的高空近似结果,在离散取样网上进行尺寸下降,并作为提议的推断基础。基于内部测算的测算模型,以最优化度和巴伊斯模型为模型,以改进定点的焦偏差的精确度模型。在前期中,对最优级的试样模型进行了同步分析。在模拟阶段,在模拟中,先进行观察,然后进行模拟分析。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员