We study identifiability of Andersson-Madigan-Perlman (AMP) chain graph models, which are a common generalization of linear structural equation models and Gaussian graphical models. AMP models are described by DAGs on chain components which themselves are undirected graphs. For a known chain component decomposition, we show that the DAG on the chain components is identifiable if the determinants of the residual covariance matrices of the chain components are monotone non-decreasing in topological order. This condition extends the equal variance identifiability criterion for Bayes nets, and it can be generalized from determinants to any super-additive function on positive semidefinite matrices. When the component decomposition is unknown, we describe conditions that allow recovery of the full structure using a polynomial time algorithm based on submodular function minimization. We also conduct experiments comparing our algorithm's performance against existing baselines.
翻译:我们研究了Andersson-Madigan-Perlman(AMP)链式图解模型(AMP)的可识别性,这些模型是线性结构方程式模型和Gaussian图形模型的共同通用通用。AMP模型由DAGs在链条组件上描述,这些组件本身是非定向图形。对于已知的链条组件分解,我们表明,如果链条组件剩余共变式矩阵的决定因素在地形顺序上是单调非降解的,则链条元件中的DAG是可以识别的。这一条件扩大了Bayes网的相等差异可识别性标准,并且可以从决定因素向正态半脱硫基体的任何超级添加功能推广。当该部件的分解状态不明时,我们描述允许使用基于亚调函数最小化的多元时间算法来恢复完整结构的条件。我们还对我们的算法与现有基线进行比较。