Recent works leveraging Graph Neural Networks to approach graph matching tasks have shown promising results. Recent progress in learning discrete distributions poses new opportunities for learning graph matching models. In this work, we propose a new model, Stochastic Iterative Graph MAtching (SIGMA), to address the graph matching problem. Our model defines a distribution of matchings for a graph pair so the model can explore a wide range of possible matchings. We further introduce a novel multi-step matching procedure, which learns how to refine a graph pair's matching results incrementally. The model also includes dummy nodes so that the model does not have to find matchings for nodes without correspondence. We fit this model to data via scalable stochastic optimization. We conduct extensive experiments across synthetic graph datasets as well as biochemistry and computer vision applications. Across all tasks, our results show that SIGMA can produce significantly improved graph matching results compared to state-of-the-art models. Ablation studies verify that each of our components (stochastic training, iterative matching, and dummy nodes) offers noticeable improvement.
翻译:利用图表神经网络来定位图表匹配任务的最新工作显示了令人乐观的结果。 学习离散分布的最近进展为学习图表匹配模型提供了新的机会 。 在此工作中, 我们提出一个新的模型, 即Stochastestic 迭代图图映像( SIGMA), 以解决图形匹配问题 。 我们的模型定义了图形对配对的分布, 这样模型可以探索各种可能的匹配。 我们进一步引入了一个新的多步匹配程序, 学会如何逐步改进图形对配对结果。 模型中还包括假节点, 这样模型就不必在没有通信的情况下找到节点匹配。 我们通过可缩放的随机优化, 将这个模型适应数据 。 我们在合成图形数据集中进行广泛的实验, 以及生物化学和计算机视觉应用 。 我们的结果显示, 在所有任务中, SIGMA 能够产生显著改进的图形匹配结果, 与最新模型相比。 校准研究证实, 我们每个组成部分( 分析训练、 迭接匹配和假节点) 都提供了显著的改进 。