Structural identifiability is a property of an ODE model with parameters that allows for the parameters to be determined from continuous noise-free data. This is a natural prerequisite for practical identifiability. Conducting multiple independent experiments could make more parameters or functions of parameters identifiable, which is a desirable property to have. How many experiments are sufficient? In the present paper, we provide an algorithm to determine the exact number of experiments for multi-experiment local identifiability and obtain an upper bound that is off at most by one for the number of experiments for multi-experiment global identifiability. Interestingly, the main theoretical ingredient of the algorithm has been discovered and proved using model theory (in the sense of mathematical logic). We hope that this unexpected connection will stimulate interactions between applied algebra and model theory, and we provide a short introduction to model theory in the context of parameter identifiability. As another related application of model theory in this area, we construct a nonlinear ODE system with one output such that single-experiment and multiple-experiment identifiability are different for the system. This contrasts with recent results about single-output linear systems. We also present a Monte Carlo randomized version of the algorithm with a polynomial arithmetic complexity. Implementation of the algorithm is provided and its performance is demonstrated on several examples. The source code is available at https://github.com/pogudingleb/ExperimentsBound.


翻译:结构性可识别性是一个ODE模型的属性, 参数允许从连续无噪音数据中确定参数。 这是实际可识别性的一个自然先决条件。 进行多重独立实验可以使参数的参数或功能具有更多的可识别性, 这是一种可取的属性。 有多少实验是足够的? 本文中, 我们提供了一个算法, 用来确定多实验本地可识别性实验的确切实验数量, 并获得一个最多由多个可探测性全球可识别性实验数量之一关闭的非线性ODE系统。 有趣的是, 算法的主要理论成分已经通过模型理论( 数学逻辑感) 被发现和证明。 我们希望, 这种意外的联系将刺激应用的代数和模型理论之间的相互作用。 在参数可识别性方面, 我们为模型理论的另一个相关应用提供了一种算法, 我们建造了一种非线性ODE系统, 其输出为单度和多重可识别性全球可识别性实验。 与最新版本的模拟性算法的模型的对比, 其模拟性演算法的最近版本是若干次的版本。 模拟性演算法的版本。 。 模拟性演算法的版本是若干次的版本 。 。 模拟的演算法的演算法的演算法是一系列的版本。 。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员