Crystal Structure Prediction (CSP) aims to discover solid crystalline materials by optimizing periodic arrangements of atoms, ions or molecules. CSP takes weeks of supercomputer time because of slow energy minimizations for millions of simulated crystals. The lattice energy is a key physical property, which determines thermodynamic stability of a crystal but has no simple analytic expression. Past machine learning approaches to predict the lattice energy used slow crystal descriptors depending on manually chosen parameters. The new area of Periodic Geometry offers much faster isometry invariants that are also continuous under perturbations of atoms. Our experiments on simulated crystals confirm that a small distance between the new invariants guarantees a small difference of energies. We compare several kernel methods for invariant-based predictions of energy and achieve the mean absolute error of less than 5kJ/mole or 0.05eV/atom on a dataset of 5679 crystals.
翻译:晶体结构预测(CSP)旨在通过优化原子、离子或分子的定期安排,发现固体晶体材料。CSP需要几周的超级计算机时间,因为数以百万计的模拟晶体的能量最小化速度缓慢。拉蒂能源是一个关键的物理属性,它决定了晶体的热力稳定性,但没有简单的分析表达方式。过去用来预测根据人工选择的参数使用慢晶体纹理器的晶体能量的机器学习方法。新领域的周期几何测量提供了更快的等分异物,在原子的扰动下,这些异异物也是连续的。我们对模拟晶体的实验证实,新变异物之间的小距离保证了很小的能量差异。我们比较了几种以恒变法预测能源的内核方法,并在5679个晶体的数据集中实现了低于5kJ/摩尔或0.05eV/原子的绝对误差。