We study the convergence in total variation and $V$-norm of discretization schemes of the underdamped Langevin dynamics. Such algorithms are very popular and commonly used in molecular dynamics and computational statistics to approximatively sample from a target distribution of interest. We show first that, for a very large class of schemes, a minorization condition uniform in the stepsize holds. This class encompasses popular methods such as the Euler-Maruyama scheme and the schemes based on splitting strategies. Second, we provide mild conditions ensuring that the class of schemes that we consider satisfies a geometric Foster--Lyapunov drift condition, again uniform in the stepsize. This allows us to derive geometric convergence bounds, with a convergence rate scaling linearly with the stepsize. This kind of result is of prime interest to obtain estimates on norms of solutions to Poisson equations associated with a given numerical method.


翻译:我们研究了欠阻尼Langevin动力学离散化方案在总变分和$V$范数上的收敛性。这样的算法在分子动力学和计算统计学中非常流行,用于近似从感兴趣的目标分布中抽样。首先,我们证明了在一个非常大的方案类中,存在一种在步长上均匀成立的次小化条件。这个类包括了欧拉-马鲁雅马方案和基于拆分策略的方案等流行方法。其次,我们提供了一些温和的条件,确保我们考虑的方案类满足一个几何Foster-Lyapunov漂移条件,并且该条件也在步长上是均匀成立的。这使我们能够推导出几何收敛上界,其中收敛速率与步长成线性关系。这种结果对于获得与给定数字方法相关的Poisson方程解的范数估计非常重要。

0
下载
关闭预览

相关内容

干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
49+阅读 · 2022年7月24日
专知会员服务
39+阅读 · 2021年8月20日
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
生成扩散模型漫谈:最优扩散方差估计(下)
PaperWeekly
0+阅读 · 2022年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月5日
VIP会员
相关资讯
生成扩散模型漫谈:最优扩散方差估计(下)
PaperWeekly
0+阅读 · 2022年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员