Adopting Convolutional Neural Networks (CNNs) in the daily routine of primary diagnosis requires not only near-perfect precision, but also a sufficient degree of generalization to data acquisition shifts and transparency. Existing CNN models act as black boxes, not ensuring to the physicians that important diagnostic features are used by the model. Building on top of successfully existing techniques such as multi-task learning, domain adversarial training and concept-based interpretability, this paper addresses the challenge of introducing diagnostic factors in the training objectives. Here we show that our architecture, by learning end-to-end an uncertainty-based weighting combination of multi-task and adversarial losses, is encouraged to focus on pathology features such as density and pleomorphism of nuclei, e.g. variations in size and appearance, while discarding misleading features such as staining differences. Our results on breast lymph node tissue show significantly improved generalization in the detection of tumorous tissue, with best average AUC 0.89 (0.01) against the baseline AUC 0.86 (0.005). By applying the interpretability technique of linearly probing intermediate representations, we also demonstrate that interpretable pathology features such as nuclei density are learned by the proposed CNN architecture, confirming the increased transparency of this model. This result is a starting point towards building interpretable multi-task architectures that are robust to data heterogeneity. Our code is available at https://bit.ly/356yQ2u.


翻译:在初级诊断的日常日常常规中采用进化神经网络(CNNs)不仅需要近效精确性,而且需要足够程度的对数据获取变化和透明度的概括性。现有的CNN模型作为黑盒,不能确保医生使用该模型的重要诊断特征。除了成功的现有技术外,如多任务学习、域对立培训和基于概念的可解释性等,本文件还论述了在培训目标中引入诊断性因素的挑战。这里,我们展示了我们的架构,通过学习基于不确定性的多任务和对称损失的加权组合,不仅需要近效精确性,而且还需要足够程度的概括性。现有的CNN模型模式作为黑盒,例如,大小和外观的变化,不能确保医生们使用重要的诊断性特征。我们关于乳腺淋巴节组织的调查结果显示,在检测肿瘤组织方面已大大改进了总体性,根据AUC 0.89 (0.01) 和 AUC 0.86 (0.00 ) 基线,通过将线性建筑的可解释性计算方法用于开始的中间结构,例如,大小和外观的外观,我们还通过解释性解释性地展示了我们目前所研究的数学结构的路径,这样可以解释的系统结构。我们所研判的模型,这是一个可理解的系统结构的路径,我们所研的可理解性,我们所研判的模型所研判的解的解的图。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
38+阅读 · 2020年3月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员