Reasoning over Temporal Knowledge Graphs (TKGs) aims to predict future facts based on given history. One of the key challenges for prediction is to learn the evolution of facts. Most existing works focus on exploring evolutionary information in history to obtain effective temporal embeddings for entities and relations, but they ignore the variation in evolution patterns of facts, which makes them struggle to adapt to future data with different evolution patterns. Moreover, new entities continue to emerge along with the evolution of facts over time. Since existing models highly rely on historical information to learn embeddings for entities, they perform poorly on such entities with little historical information. To tackle these issues, we propose a novel Temporal Meta-learning framework for TKG reasoning, MetaTKG for brevity. Specifically, our method regards TKG prediction as many temporal meta-tasks, and utilizes the designed Temporal Meta-learner to learn evolutionary meta-knowledge from these meta-tasks. The proposed method aims to guide the backbones to learn to adapt quickly to future data and deal with entities with little historical information by the learned meta-knowledge. Specially, in temporal meta-learner, we design a Gating Integration module to adaptively establish temporal correlations between meta-tasks. Extensive experiments on four widely-used datasets and three backbones demonstrate that our method can greatly improve the performance.
翻译:以时间知识图(TKGs)为依据思考时间知识图(TKGs),目的是预测基于特定历史的未来事实。预测的主要挑战之一是了解事实的演变情况。大多数现有工作的重点是探索历史中的进化信息,以便为实体和关系获取有效的时间嵌入,但忽视了事实演变模式的变化变化模式的变化,这使得它们难以适应不同演变模式的未来数据。此外,随着时间的变化,新的实体继续出现。由于现有模型高度依赖历史信息来学习实体的嵌入,因此在历史信息很少的这些实体上表现不佳。为了解决这些问题,我们提出了一个创新的TKG推理TemalMetalMet-学习框架,MetTKGs for brevitity。具体地说,我们的方法将TKG的预测视为许多时间元任务,并利用设计的Temalmoal Met-learner从这些元任务中学习进化的元知识。拟议方法旨在引导骨干骨干系统学习如何迅速适应未来数据,并用很少的历史信息与这些实体打交道。我们设计的Met-lexsimal-lexsimalalal lavels asual lags suptravel laxs as as as as betravel lags mindtrading lax lax lax lax lagild lax lags as lax lax latictal latictal lagildal latikedal ladal lads latingdal latisteil lad lad ladd laticil latike laddds latisteil latikedddddds lads lads lads lad lads lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad ladal lad ladal lad ladal