Recently, large-scale pre-trained Vision-Language Models (VLMs) have demonstrated great potential in learning open-world visual representations, and exhibit remarkable performance across a wide range of downstream tasks through efficient fine-tuning. In this work, we innovatively introduce the concept of dual learning into fine-tuning VLMs, i.e., we not only learn what an image is, but also what an image isn't. Building on this concept, we introduce a novel DualAdapter approach to enable dual-path adaptation of VLMs from both positive and negative perspectives with only limited annotated samples. In the inference stage, our DualAdapter performs unified predictions by simultaneously conducting complementary positive selection and negative exclusion across target classes, thereby enhancing the overall recognition accuracy of VLMs in downstream tasks. Our extensive experimental results across 15 datasets validate that the proposed DualAdapter outperforms existing state-of-the-art methods on both few-shot learning and domain generalization tasks while achieving competitive computational efficiency. Code is available at https://github.com/zhangce01/DualAdapter.
翻译:暂无翻译