Neural architecture search (NAS) relies on a good controller to generate better architectures or predict the accuracy of given architectures. However, training the controller requires both abundant and high-quality pairs of architectures and their accuracy, while it is costly to evaluate an architecture and obtain its accuracy. In this paper, we propose SemiNAS, a semi-supervised NAS approach that leverages numerous unlabeled architectures (without evaluation and thus nearly no cost) to improve the controller. Specifically, SemiNAS 1) trains an initial controller with a small set of architecture-accuracy data pairs; 2) uses the trained controller to predict the accuracy of large amount of architectures~(without evaluation); and 3) adds the generated data pairs to the original data to further improve the controller. SemiNAS has two advantages: 1) It reduces the computational cost under the same accuracy guarantee. 2) It achieves higher accuracy under the same computational cost. On NASBench-101 benchmark dataset, it discovers a top 0.01% architecture after evaluating roughly 300 architectures, with only 1/7 computational cost compared with regularized evolution and gradient-based methods. On ImageNet, it achieves a state-of-the-art top-1 error rate of $23.5\%$ (under the mobile setting) using 4 GPU-days for search. We further apply it to LJSpeech text to speech task and it achieves 97% intelligibility rate in the low-resource setting and 15% test error rate in the robustness setting, with 9%, 7% improvements over the baseline respectively. Our code is available at https://github.com/renqianluo/SemiNAS.
翻译:神经架构搜索(NAS) 依靠一个良好的控制器来生成更好的架构或预测给定架构的准确性。 然而, 培训控制器需要大量高质量的建筑组合及其准确性, 而评估一个架构和获得其准确性的成本是昂贵的。 在本文中, 我们提议SeimNAS, 这是一种半监督的NAS 方法, 利用许多未标记的架构( 没有评估, 因而几乎没有成本 ) 来改进控制器。 具体来说, SeimNAS 1 培训一个初始控制器, 配有一套小规模的架构改进数据配对; 2 使用经过培训的控制器来预测大量架构的准确性( 没有评估); 3 将生成的数据组合添加到原始数据中, 以更准确性的方式来改进一个架构。 SlimianNAS, 以固定的 RalityS-lational-lational-lationrational rational-lational-lational-lational-lational-lational-lational-lex rations lab-lational-lational-lational-leval- reck lax lax lax lax lax lax lax laut lax lax lax lax lax lax laut lax lax laut laut laut laut laut laut laxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx