Facial Expression Recognition (FER) is a classification task that points to face variants. Hence, there are certain affinity features between facial expressions, receiving little attention in the FER literature. Convolution padding, despite helping capture the edge information, causes erosion of the feature map simultaneously. After multi-layer filling convolution, the output feature map named albino feature definitely weakens the representation of the expression. To tackle these challenges, we propose a novel architecture named Amending Representation Module (ARM). ARM is a substitute for the pooling layer. Theoretically, it can be embedded in the back end of any network to deal with the Padding Erosion. ARM efficiently enhances facial expression representation from two different directions: 1) reducing the weight of eroded features to offset the side effect of padding, and 2) sharing affinity features over mini-batch to strengthen the representation learning. Experiments on public benchmarks prove that our ARM boosts the performance of FER remarkably. The validation accuracies are respectively 92.05% on RAF-DB, 65.2% on Affect-Net, and 58.71% on SFEW, exceeding current state-of-the-art methods. Our implementation and trained models are available at https://github.com/JiaweiShiCV/Amend-Representation-Module.


翻译:显性表达度识别( FER) 是一个分类任务, 指向变量 。 因此, 面部表达形式之间有一些相似性, 在 FER 文献中很少引起注意 。 革命悬浮, 尽管帮助捕捉边缘信息, 却同时导致地貌图的侵蚀 。 在多层填充卷变后, 名为 albino 的输出特征地图肯定会削弱表达方式的表达方式 。 为了应对这些挑战, 我们提议了一个名为 Amending 代表模块( ARM) 的新结构 。 ARM 是集合层的替代品。 从理论上讲, 它可以嵌入任何网络的后端, 以便与帕丁· 埃罗斯ion 打交道。 ARM 有效地加强了两个不同方向的面貌表现方式:1) 降低被侵蚀的特征的重量, 以抵消垫面效应的副作用 。 2) 以小型包连接方式共享亲近性特征来强化表达方式的表达方式 。 公共基准实验证明我们的ARM- DB 的验证范围分别是92. 05%, Amt- Net 和 Afect- Net 和 58. 7.1- 模型已经超过 MA- fas- fas- sma- spal- 。

0
下载
关闭预览

相关内容

安谋控股公司,又称ARM公司,跨国性半导体设计与软件公司,总部位于英国英格兰剑桥。主要的产品是ARM架构处理器的设计,将其以知识产权的形式向客户进行授权,同时也提供软件开发工具。 维基百科
专知会员服务
32+阅读 · 2021年6月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
120+阅读 · 2019年12月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员