We consider the problem of large-scale Fisher market equilibrium computation through scalable first-order optimization methods. It is well-known that market equilibria can be captured using structured convex programs such as the Eisenberg-Gale and Shmyrev convex programs. Highly performant deterministic full-gradient first-order methods have been developed for these programs. In this paper, we develop new block-coordinate first-order methods for computing Fisher market equilibria, and show that these methods have interpretations as t\^atonnement-style or proportional response-style dynamics where either buyers or items show up one at a time. We reformulate these convex programs and solve them using proximal block coordinate descent methods, a class of methods that update only a small number of coordinates of the decision variable in each iteration. Leveraging recent advances in the convergence analysis of these methods and structures of the equilibrium-capturing convex programs, we establish fast convergence rates of these methods.
翻译:我们通过可缩放的第一阶优化方法来考虑大规模渔业市场平衡的计算问题。 众所周知, 市场平衡可以通过结构化的组合程序, 如Eisenberg- Gale 和 Shmyrev 组合程序来捕捉。 已经为这些方案制定了高性能的确定性全级第一阶方法。 在本文件中, 我们开发了计算渔业市场平衡的新的区块协调第一阶方法, 并表明这些方法具有作为t<unk> atonment式或比例对应式动态的诠释, 买方或项目都同时显示一个。 我们重新配置这些组合程序, 并使用纯性块协调下游方法来解决它们。 这种方法只更新了每个迭代中决定变量的少量协调。 我们利用这些方法的趋同分析的最新进展以及平衡- 组合程序的结构, 我们建立了这些方法的快速趋同率 。</s>