We consider the problem of large-scale Fisher market equilibrium computation through scalable first-order optimization methods. It is well-known that market equilibria can be captured using structured convex programs such as the Eisenberg-Gale and Shmyrev convex programs. Highly performant deterministic full-gradient first-order methods have been developed for these programs. In this paper, we develop new block-coordinate first-order methods for computing Fisher market equilibria, and show that these methods have interpretations as t\^atonnement-style or proportional response-style dynamics where either buyers or items show up one at a time. We reformulate these convex programs and solve them using proximal block coordinate descent methods, a class of methods that update only a small number of coordinates of the decision variable in each iteration. Leveraging recent advances in the convergence analysis of these methods and structures of the equilibrium-capturing convex programs, we establish fast convergence rates of these methods.


翻译:我们通过可缩放的第一阶优化方法来考虑大规模渔业市场平衡的计算问题。 众所周知, 市场平衡可以通过结构化的组合程序, 如Eisenberg- Gale 和 Shmyrev 组合程序来捕捉。 已经为这些方案制定了高性能的确定性全级第一阶方法。 在本文件中, 我们开发了计算渔业市场平衡的新的区块协调第一阶方法, 并表明这些方法具有作为t<unk> atonment式或比例对应式动态的诠释, 买方或项目都同时显示一个。 我们重新配置这些组合程序, 并使用纯性块协调下游方法来解决它们。 这种方法只更新了每个迭代中决定变量的少量协调。 我们利用这些方法的趋同分析的最新进展以及平衡- 组合程序的结构, 我们建立了这些方法的快速趋同率 。</s>

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
83+阅读 · 2022年7月16日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员