We present a novel algorithm for real-time planar semantic mapping tailored for humanoid robots navigating complex terrains such as staircases. Our method is adaptable to any odometry input and leverages GPU-accelerated processes for planar extraction, enabling the rapid generation of globally consistent semantic maps. We utilize an anisotropic diffusion filter on depth images to effectively minimize noise from gradient jumps while preserving essential edge details, enhancing normal vector images' accuracy and smoothness. Both the anisotropic diffusion and the RANSAC-based plane extraction processes are optimized for parallel processing on GPUs, significantly enhancing computational efficiency. Our approach achieves real-time performance, processing single frames at rates exceeding $30~Hz$, which facilitates detailed plane extraction and map management swiftly and efficiently. Extensive testing underscores the algorithm's capabilities in real-time scenarios and demonstrates its practical application in humanoid robot gait planning, significantly improving its ability to navigate dynamic environments.
翻译:暂无翻译