We present a method of detecting bifurcations by locating zeros of a signed version of the smallest singular value of the Jacobian. This enables the use of quadratically convergent root-bracketing techniques or Chebyshev interpolation to locate bifurcation points. Only positive singular values have to be computed, though the method relies on the existence of an analytic or smooth singular value decomposition (SVD). The sign of the determinant of the Jacobian, computed as part of the bidiagonal reduction in the SVD algorithm, eliminates slope discontinuities at the zeros of the smallest singular value. We use the method to search for spatially quasi-periodic traveling water waves that bifurcate from large-amplitude periodic waves. The water wave equations are formulated in a conformal mapping framework to facilitate the computation of the quasi-periodic Dirichlet-Neumann operator. We find examples of pure gravity waves with zero surface tension and overhanging gravity-capillary waves. In both cases, the waves have two spatial quasi-periods whose ratio is irrational. We follow the secondary branches via numerical continuation beyond the realm of linearization about solutions on the primary branch to obtain traveling water waves that extend over the real line with no two crests or troughs of exactly the same shape. The pure gravity wave problem is of relevance to ocean waves, where capillary effects can be neglected. Such waves can only exist through secondary bifurcation as they do not persist to zero amplitude. The gravity-capillary wave problem demonstrates the effectiveness of using the signed smallest singular value as a test function for multi-parameter bifurcation problems. This test function becomes mesh independent once the mesh is fine enough.


翻译:我们展示了一种方法来检测双曲线。 其方法是, 定位经签名的双曲线的零, 其值是雅各雅各雅各雅各雅各雅各雅各雅各雅各的最小单值的最小值。 这使得能够使用二次趋同的根基- 根曲裂技术或 Chebyshev 内插法来定位双曲线点。 只需要计算正单数值, 尽管该方法依赖于存在一个分析或平滑的单数值分解( SVD ) 。 雅各雅各的决定因素是SVD 算法的边际斜坡缩减法的一部分, 消除最小单数值零的零点的斜坡不适应性。 我们使用这一方法来寻找空间半周期间半流动的水流波, 从大增度周期周期的周期波分错位。 水波方方方程式的精确度方程式形成一个统一的绘图框架, 用于计算半周期间断面- Neurit- Neumann 。 我们发现纯重心波的纯度波点波点波点波流的纯度波比重度波比重。 我们从直处一直到直行到直径直向直行, 。 直向直向直向直向直向直行, 直行, 直向直向直向直行, 直行至直向直向直向直向直行, 直行, 直行至直向直向直向的轨道的轨道的轨道的轨道的轨道的波形的波形的波形波形直行至至至至至至直行至直行至直行至直行至直行至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直行至直至直至直至直至直至直至直至直至直至直至直行, 直行, 直至直至直行至直行至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直行, 直至直至直至直至直至直直

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
50+阅读 · 2020年12月14日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月20日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员