We introduce a new family of high order accurate semi-implicit schemes for the solution of non-linear hyperbolic partial differential equations on unstructured polygonal meshes. The time discretization is based on a splitting between explicit and implicit terms that may arise either from the multi-scale nature of the governing equations, which involve both slow and fast scales, or in the context of projection methods, where the numerical solution is projected onto the physically meaningful solution manifold. We propose to use a high order finite volume (FV) scheme for the explicit terms, ensuring conservation property and robustness across shock waves, while the virtual element method (VEM) is employed to deal with the discretization of the implicit terms, which typically requires an elliptic problem to be solved. The numerical solution is then transferred via suitable L2 projection operators from the FV to the VEM solution space and vice-versa. High order time accuracy is achieved using the semi-implicit IMEX Runge-Kutta schemes, and the novel schemes are proven to be asymptotic preserving and well-balanced. As representative models, we choose the shallow water equations (SWE), thus handling multiple time scales characterized by a different Froude number, and the incompressible Navier-Stokes equations (INS), which are solved at the aid of a projection method to satisfy the solenoidal constraint of the velocity field. Furthermore, an implicit discretization for the viscous terms is devised for the INS model, which is based on the VEM technique. Consequently, the CFL-type stability condition on the maximum admissible time step is based only on the fluid velocity and not on the celerity nor on the viscous eigenvalues. A large suite of test cases demonstrates the accuracy and the capabilities of the new family of schemes to solve relevant benchmarks in the field of incompressible fluids.
翻译:我们引入了一种新的高阶精度半隐式数值方案,用于解决非线性双曲型偏微分方程在非结构化多边形网格上的数值求解问题。时间离散化采用显式和隐式项分解,这些项可能来自控制方程的多尺度特性,包括慢尺度和快尺度,或者在投影方法中由于数值解被投影到物理上有意义的解空间中而产生的,因此需要隐式求解部分所构成的椭圆问题。我们建议使用高阶精度的有限体积(FV)方法来处理显式项,以确保存在守恒性和抗冲击性,并采用虚拟元方法(VEM)来处理隐式项的离散化部分。对于显式和隐式部分的数字解采用合适的 L2 投影算子可以互相转换。 采用半隐式 IMEX Runge-Kutta 数值格式实现高阶时间精度,同时新的数值方案具有渐近保持性和良好平衡性。 SWE 模型和 INS 模型被用作代表性模型,处理多种具有不同 Froude 数的时间尺度问题,通过投影方法求解 INS 模型以保持速度场的旋度为零。此外,INS 模型的粘性项采用基于 VEM 技术的隐式离散化方法进行处理,因此允许最大允许时间步长的 CFL 类型稳定性条件仅基于流体速度,而不是基于速度和粘性特征值。通过大量测试案例证明了新方案的精度和能力,这些案例具有重要的不可压缩流力学的意义。