The objective of this article is to introduce a novel technique for computing numerical solutions to the nonlinear inverse heat conduction problem. This involves solving nonlinear parabolic equations with Cauchy data provided on one side $\Gamma$ of the boundary of the computational domain $\Omega$. The key step of our proposed method is the truncation of the Fourier series of the solution to the governing equation. The truncation technique enables us to derive a system of 1D ordinary differential equations. Then, we employ the well-known Runge-Kutta method to solve this system, which aids in addressing the nonlinearity and the lack of data on $\partial \Omega \setmunus \Gamma$. This new approach is called the dimensional reduction method. By converting the high-dimensional problem into a 1D problem, we achieve exceptional computational speed. Numerical results are provided to support the effectiveness of our approach.
翻译:暂无翻译