We consider partitioned time integration for heterogeneous coupled heat equations. First and second order multirate, as well as time-adaptive Dirichlet-Neumann Waveform relaxation (DNWR) methods are derived. In 1D and for implicit Euler time integration, we analytically determine optimal relaxation parameters for the fully discrete scheme. We test the robustness of the relaxation parameters on the second order multirate method in 2D. DNWR is shown to be very robust and consistently yielding fast convergence rates, whereas the closely related Neumann-Neumann Waveform relaxtion (NNWR) method is slower or even diverges. The waveform approach naturally allows for different timesteps in the subproblems. In a performance comparison for DNWR, the time-adaptive method dominates the multirate method due to automatically finding suitable stepsize ratios. Overall, we obtain a fast, robust, multirate and time adaptive partitioned solver for unsteady conjugate heat transfer.
翻译:我们考虑的是多种混合热配方的分解时间整合。 一级和二级的多级, 以及时间适应的Drichlet- Neumann波形放松( DNWR) 方法。 在1D 和 隐含的 Euler 时间整合中, 我们分析地决定了完全离散方案的最佳放松参数。 我们在 2D 中测试了第二等级多率方法的放松参数的稳健性。 DNWR 被证明是非常稳健的,并持续产生快速趋同率, 而密切相关的Neumann- Neumann波形放松(NNNWR) 方法则比较缓慢甚至不同。 波形方法自然允许在子问题中采取不同的时间步骤。 在对 DNWR 的性能比较中, 时间适应方法主宰了自动找到适当阶梯化比率的多率方法。 总的来说, 我们获得了一个快速、 稳健、多速、 和时间适应的分解解器, 用于不稳态的配制式热传输。