In this paper, we develop a multiscale method for solving the Signorini problem with a heterogeneous field. The Signorini problem is encountered in many applications, such as hydrostatics, thermics, and solid mechanics. It is well-known that numerically solving this problem requires a fine computational mesh, which can lead to a large number of degrees of freedom. The aim of this work is to develop a new hybrid multiscale method based on the framework of the generalized multiscale finite element method (GMsFEM). The construction of multiscale basis functions requires local spectral decomposition. Additional multiscale basis functions related to the contact boundary are required so that our method can handle the unilateral condition of the Signorini type naturally. A complete analysis of the proposed method is provided and a result of the spectral convergence is shown. Numerical results are provided to validate our theoretical findings.
翻译:在本文中,我们开发了一种多层次的方法来解决斯莫里尼问题。 斯莫里尼问题在许多应用中都遇到过, 例如, 氢静态、 热力和固力力力学。 众所周知, 数字上解决这个问题需要精细的计算网格, 它可以带来大量程度的自由。 这项工作的目的是在通用的多级有限元素法( GMSFEM) 的框架内开发一种新的混合多级方法。 多级基础功能的构建需要本地光谱分解。 需要与接触边界有关的更多多级基础功能, 以便我们的方法能够自然地处理斯莫里尼型的单方状态。 提供了对拟议方法的全面分析,并展示了光谱融合的结果。 提供了数字性结果来验证我们的理论结论。