The correlation properties of sequences form a focal point in the design of multiple access systems of communications. Such a system must be able to serve a number of simultaneous users while keeping interference low. A popular choice for the set of sequences to deploy is the quasi-complementary sequence set (QCSS). Its large set size enables the system to accommodate a lot of users. The set has low nontrivial correlation magnitudes within a zone around the origin. This keeps undue interference among users under control. A QCSS performs better than the perfect complementary sequence set (PCSS) does in schemes with fractional delays. The optimality of a set of periodic sequences is measured by its maximum periodic correlation magnitude, for which there is an established lower bound to aim at. For a fixed period, optimal sets are known only for very restricted parameters. Efforts have therefore been centered around the constructions of asymptotically optimal sets. Their periods are allowed to be as large as sufficient to establish optimality. In this paper we share an insight that a sequence set that asymptotically attains the Welch bound generates an asymptotically optimal periodic QCSS by interleaving. One can simply use known families of such sequence sets to construct the desired QCSSs. Seven families of QCSSs with specific parameters are shown as examples of this general construction. We build upon the insight to propose two new direct constructions of asymptotically optimal QCSSs with very flexible parameters without interleaving. The flexibility enhances their appeal for practical implementation. The mathematical tools come from the theory of groups in the form of additive and multiplicative characters of finite fields.
翻译:序列的关联特性形成多个通信访问系统设计中的焦点点。 这样的系统必须能够为多个同时使用的用户服务, 同时保持低调。 要部署的序列集的流行选择是准补充序列集( QCSS) 。 其庞大的设置大小使系统能够容纳许多用户。 设置在源周围的区域内具有低非三边的关联大小。 允许用户在控制区内进行不适当的干扰。 QCSS 的表现优于完美的实际互补序列组( PCSS) 在分数延迟的方案中运行。 一组定期序列的最佳性以其最高定期的参数来衡量, 而对于这些序列的精确度是固定的。 在一个固定的时期内, 最佳的设置只为非常有限的参数。 因此, 工作围绕着无症状的最佳组合的构造。 允许它们的时间大得足以建立最佳性。 在本文中, 我们分享一个洞察到Welch绑定的精确度, 以最高周期的参数度度度度度度度度度度度度度度度度度度度度测量, 将生成一个简单且不固定的S- 优化的运行序列。 在常规的构造中显示特定的 CSAS- 。 在常规构造中显示的构造中, 的构造中, 将显示为普通的构造中显示的精度的精度的精度。 。 将显示的精度的精度的精度的精度将显示的精度, 。 。 将显示的精度将显示的精度的精度的精度。 。 。 将显示的精度的精度的精度的精度, 。