We propose two multiscale comparisons of graphs using heat diffusion, allowing to compare graphs without node correspondence or even with different sizes. These multiscale comparisons lead to the definition of Lipschitz-continuous empirical processes indexed by a real parameter. The statistical properties of empirical means of such processes are studied in the general case. Under mild assumptions, we prove a functional Central Limit Theorem, as well as a Gaussian approximation with a rate depending only on the sample size. Once applied to our processes, these results allow to analyze data sets of pairs of graphs. We design consistent confidence bands around empirical means and consistent two-sample tests, using bootstrap methods. Their performances are evaluated by simulations on synthetic data sets.


翻译:我们建议对使用热扩散的图表进行两个多尺度的比较,以便能够比较图表,而没有节点对应,甚至没有不同大小的图表。这些多尺度的比较导致以实际参数为索引的Lipschitz持续的经验过程的定义。在一般情况下研究这种过程的经验手段的统计特性。在轻度假设下,我们证明我们有一个功能的中点理论,以及一个仅根据抽样大小的速率的高斯近似值。这些结果一旦应用到我们的工艺中,就能够分析成对的图表数据集。我们用靴套方法围绕经验手段和一致的两样试验设计一致的信任带。它们的表现通过合成数据集的模拟来评价。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月17日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
5+阅读 · 2019年6月5日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月17日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
5+阅读 · 2019年6月5日
Top
微信扫码咨询专知VIP会员