Machine learning models with high accuracy on test data can still produce systematic failures, such as harmful biases and safety issues, when deployed in the real world. To detect and mitigate such failures, practitioners run behavioral evaluation of their models, checking model outputs for specific types of inputs. Behavioral evaluation is important but challenging, requiring that practitioners discover real-world patterns and validate systematic failures. We conducted 18 semi-structured interviews with ML practitioners to better understand the challenges of behavioral evaluation and found that it is a collaborative, use-case-first process that is not adequately supported by existing task- and domain-specific tools. Using these findings, we designed Zeno, a general-purpose framework for visualizing and testing AI systems across diverse use cases. In four case studies with participants using Zeno on real-world models, we found that practitioners were able to reproduce previous manual analyses and discover new systematic failures.
翻译:测试数据高度精准的机床学习模型在实际世界中部署时仍可产生系统失灵,例如有害的偏见和安全问题。为了发现和减轻这种失灵,从业人员对其模型进行行为评估,检查特定类型投入的模型输出。行为评估固然重要,但具有挑战性,要求从业人员发现真实世界模式并验证系统失灵。我们与ML从业人员进行了18次半结构性访谈,以更好地了解行为评估的挑战,发现这是一个协作的、使用第一案例的过程,没有现有特定任务和领域工具的充分支持。我们利用这些发现,设计了Zeno,这是一个通用框架,用于对不同使用案例的AI系统进行可视化和测试。在与参与者使用Zeno在现实世界模型上的4个案例研究中,我们发现实践者能够复制以前的手工分析,发现新的系统性失败。