Conditional entropy models effectively leverage spatio-temporal contexts to reduce video redundancy. However, incorporating temporal context often introduces additional model complexity and increases computational cost. In parallel, many existing spatial context models lack explicit modeling the ordering of spatial dependencies, which may limit the availability of relevant context during decoding. To address these issues, we propose the Context Guided Transformer (CGT) entropy model, which estimates probability mass functions of the current frame conditioned on resampled temporal context and dependency-weighted spatial context. A temporal context resampler learns predefined latent queries to extract critical temporal information using transformer encoders, reducing downstream computational overhead. Meanwhile, a teacher-student network is designed as dependency-weighted spatial context assigner to explicitly model the dependency of spatial context order. The teacher generates an attention map to represent token importance and an entropy map to reflect prediction certainty from randomly masked inputs, guiding the student to select the weighted top-k tokens with the highest spatial dependency. During inference, only the student is used to predict undecoded tokens based on high-dependency context. Experimental results demonstrate that our CGT model reduces entropy modeling time by approximately 65% and achieves an 11% BD-Rate reduction compared to the previous state-of-the-art conditional entropy model.
翻译:暂无翻译