An important task in survival analysis is choosing a structure for the relationship between covariates of interest and the time-to-event outcome. For example, the accelerated failure time (AFT) model structures each covariate effect as a constant multiplicative shift in the outcome distribution across all survival quantiles. Though parsimonious, this structure cannot detect or capture effects that differ across quantiles of the distribution, a limitation that is analogous to only permitting proportional hazards in the Cox model. To address this, we propose a general framework for quantile-varying multiplicative effects under the AFT model. Specifically, we embed flexible regression structures within the AFT model, and derive a novel formula for interpretable effects on the quantile scale. A regression standardization scheme based on the g-formula is proposed to enable estimation of both covariate-conditional and marginal effects for an exposure of interest. We implement a user-friendly Bayesian approach for estimation and quantification of uncertainty, while accounting for left truncation and complex censoring. We emphasize the intuitive interpretation of this model through numerical and graphical tools, and illustrate its performance by application to a study of Alzheimer's disease and dementia.
翻译:生存分析中的一项重要任务是选择利益共变和时间到活动结果之间的关系结构。例如,加速失灵时间模型结构每个共变效应都是所有生存量分布结果的不断倍增性变化。虽然这种结构虽然不尽人意,但无法检测或捕捉分布各分数之间不同的影响,这一限制类似于只允许Cox模型中相称的危险。为了解决这个问题,我们提议了一个总框架,用于AFT模型下量化的多复制效应。具体地说,我们在AFT模型中嵌入灵活的回归结构,并产生一个可解释的公式,用于对四分制规模的可解释效果进行新的公式。基于 g-公式的回归标准化计划,以能够估计不同分布分布的复变条件效应和边际效应。我们采用了方便用户的Bayesian 方法来估计和量化不确定性,同时计算左转和复杂的审查。我们强调通过数字和图形工具对这个模型的直观解释,并用一个疾病研究来说明其性能。