To select outcomes for clinical trials testing experimental therapies for Huntington disease, a fatal neurodegenerative disorder, analysts model how potential outcomes change over time. Yet, subjects with Huntington disease are often observed at different levels of disease progression. To account for these differences, analysts include time to clinical diagnosis as a covariate when modeling potential outcomes, but this covariate is often censored. One popular solution is imputation, whereby we impute censored values using predictions from a model of the censored covariate given other data, then analyze the imputed dataset. However, when this imputation model is misspecified, our outcome model estimates can be biased. To address this problem, we developed a novel method, dubbed "ACE imputation." First, we model imputed values as error-prone versions of the true covariate values. Then, we correct for these errors using semiparametric theory. Specifically, we derive an outcome model estimator that is consistent, even when the censored covariate is imputed using a misspecified imputation model. Simulation results show that ACE imputation remains empirically unbiased even if the imputation model is misspecified, unlike multiple imputation which yields >100% bias. Applying our method to a Huntington disease study pinpoints outcomes for clinical trials aimed at slowing disease progression.
翻译:为了选择临床试验结果,测试亨廷顿病(一种致命的神经退化性疾病)的实验性实验治疗结果,分析家将潜在结果随时间的变化而变化。然而,亨廷顿病的症状往往在疾病发展的不同水平上观察到。为了说明这些差异,分析家将临床诊断时间作为潜在结果模型的共变情况,但这种共变情况往往受到审查。一个流行的解决办法是估算,我们使用检查后变换给其他数据的模型的预测来估算受审查的数值,然后分析估算出的数据。然而,当这一估算模型被错误地描述时,我们的结果模型的估计数可能会有偏差。为了解决这个问题,我们开发了一种新颖的方法,称为“ACE估计”。首先,我们将临床诊断作为真实变换值的错误易变换版本来计算出。然后,我们用半参数理论来纠正这些错误。具体地说,我们用审查后变式计算出的结果模型的估算值是一致的,即使当经过审查的计算出一种错误的计算模型模型时,我们的结果模型的计算出,我们的计算出我们的结果模型可能会有偏差。模拟。模拟结果显示,我们的结果模型的计算出,我们的结果模型可能会有偏差的计算出我们的结果模型估计出,我们的结果模型的模型可能会有偏差。</s>