To accelerate MRI, the field of compressed sensing is traditionally concerned with optimizing the image quality after a partial undersampling of the measurable $\textit{k}$-space. In our work, we propose to change the focus from the quality of the reconstructed image to the quality of the downstream image analysis outcome. Specifically, we propose to optimize the patterns according to how well a sought-after pathology could be detected or localized in the reconstructed images. We find the optimal undersampling patterns in $\textit{k}$-space that maximize target value functions of interest in commonplace medical vision problems (reconstruction, segmentation, and classification) and propose a new iterative gradient sampling routine universally suitable for these tasks. We validate the proposed MRI acceleration paradigm on three classical medical datasets, demonstrating a noticeable improvement of the target metrics at the high acceleration factors (for the segmentation problem at $\times$16 acceleration, we report up to 12% improvement in Dice score over the other undersampling patterns).
翻译:为了加速磁共振,压缩感测领域传统上在部分低估了可测量的 $\ textit{k}- space 后最优化图像质量。 在我们的工作中,我们提议将重点从重建图像的质量改为下游图像分析结果的质量。 具体地说,我们提议根据在重建图像中如何很好地检测到所寻求的病理学或在本地化来优化模式。 我们发现$\ textit{k}- space中最佳的低位抽样模式,在常见医疗视力问题(重建、分解和分类)中最大限度地实现有兴趣的目标值功能,并提出一个普遍适合这些任务的新的迭代性梯度取样常规。 我们验证了三个典型医学数据集的拟议磁共振加速模式,显示在高加速率因素下目标指标明显改进(对于分解问题,16美元加速度,我们报告Dice的得分数比其他低位模式提高了12% )。