We introduce tools from numerical analysis and high dimensional probability for precision control and complexity analysis of subdivision-based algorithms in computational geometry. We combine these tools with the continuous amortization framework from exact computation. We use these tools on a well-known example from the subdivision family: the adaptive subdivision algorithm due to Plantinga and Vegter. The only existing complexity estimate on this rather fast algorithm was an exponential worst-case upper bound for its interval arithmetic version. We go beyond the worst-case by considering both average and smoothed analysis, and prove polynomial time complexity estimates for both interval arithmetic and finite-precision versions of the Plantinga-Vegter algorithm.
翻译:我们在计算几何中引入了来自数字分析和高维概率的工具,用于精确控制和复杂分析基于分区的算法。我们将这些工具与精确计算中的连续摊销框架结合起来。我们将这些工具用于一个来自分区大家庭的众所周知的例子:由于Plantinga和Vegter而具有适应性的分区算法。这个相当快的算法的唯一现有复杂估计是其间距算术版本的指数性最坏情况上限。我们超越了最坏的情况,既考虑平均分析,又考虑平滑的分析,并证明Plantinga-Vegter算法的间隔算术和限定精度版本的多元时间复杂性估计。