AIGC (AI-Generated Content) has achieved tremendous success in many applications such as text-to-image tasks, where the model can generate high-quality images with diverse prompts, namely, different descriptions in natural languages. More surprisingly, the emerging personalization techniques even succeed in describing unseen concepts with only a few personal images as references, and there have been some commercial platforms for sharing the valuable personalized concept. However, such an advanced technique also introduces a severe threat, where malicious users can misuse the target concept to generate highly-realistic illegal images. Therefore, it becomes necessary for the platform to trace malicious users and hold them accountable. In this paper, we focus on guarding the most popular lightweight personalization model, ie, Textual Inversion (TI). To achieve it, we propose the novel concept watermarking, where watermark information is embedded into the target concept and then extracted from generated images based on the watermarked concept. Specifically, we jointly train a watermark encoder and a watermark decoder with the sampler in the loop. It shows great resilience to different diffusion sampling processes possibly chosen by malicious users, meanwhile preserving utility for normal use. In practice, the concept owner can upload his concept with different watermarks (ie, serial numbers) to the platform, and the platform allocates different users with different serial numbers for subsequent tracing and forensics.
翻译:暂无翻译