We present a new approach for computing planar hexagonal meshes that approximate a given surface, represented as a triangle mesh. Our method is based on two novel technical contributions. First, we introduce Coordinate Power Fields, which are a pair of tangent vector fields on the surface that fulfill a certain continuity constraint. We prove that the fulfillment of this constraint guarantees the existence of a seamless parameterization with quantized rotational jumps, which we then use to regularly remesh the surface. We additionally propose an optimization framework for finding Coordinate Power Fields, which also fulfill additional constraints, such as alignment, sizing and bijectivity. Second, we build upon this framework to address a challenging meshing problem: planar hexagonal meshing. To this end, we suggest a combination of conjugacy, scaling and alignment constraints, which together lead to planarizable hexagons. We demonstrate our approach on a variety of surfaces, automatically generating planar hexagonal meshes on complicated meshes, which were not achievable with existing methods.
翻译:我们提出了一种新的方法来计算接近某一表面的平面六边形金属,以三角网格为代表。 我们的方法基于两个新的技术贡献。 首先, 我们引入了坐标功率场, 它们是表层上一对相近的矢量场, 符合一定的连续性限制。 我们证明, 实现这一制约保证了存在一个无缝参数化, 并带有四分制旋转跳, 然后我们用它来定期对表层进行再造。 我们还提议了一个最佳框架, 用于寻找坐标功率场, 该框架还包含额外的限制, 如对齐、 分化和双偏度。 其次, 我们在这个框架的基础上解决一个具有挑战性的问题: 平面六边线网格网状。 为此, 我们建议结合一个相近、 缩放和对齐的制约, 共同引出可规划的六边形。 我们展示了我们在不同表面的方法上的方法, 自动产生对复杂的 meshe的平面的六边形线。