This paper discusses the theory and numerical method of two-scale analysis for the multiscale Landau-Lifshitz-Gilbert equation in composite ferromagnetic materials. The novelty of this work can be summarized in three aspects: Firstly, the more realistic and complex model is considered, including the effects of the exchange field, anisotropy field, stray field, and external magnetic field. The explicit convergence orders in the $H^1$ norm between the classical solution and the two-scale solution are obtained. Secondly, we propose a robust numerical framework, which is employed in several comprehensive experiments to validate the convergence results for the Periodic and Neumann problems. Thirdly, we design an improved implicit numerical scheme to reduce the required number of iterations and relaxes the constraints on the time step size, which can significantly improve computational efficiency. Specifically, the projection and the expansion methods are given to overcome the inherent non-consistency in the initial data between the multiscale problem and homogenized problem.
翻译:暂无翻译