Bayesian inference problems require sampling or approximating high-dimensional probability distributions. The focus of this paper is on the recently introduced Stein variational gradient descent methodology, a class of algorithms that rely on iterated steepest descent steps with respect to a reproducing kernel Hilbert space norm. This construction leads to interacting particle systems, the mean-field limit of which is a gradient flow on the space of probability distributions equipped with a certain geometrical structure. We leverage this viewpoint to shed some light on the convergence properties of the algorithm, in particular addressing the problem of choosing a suitable positive definite kernel function. Our analysis leads us to considering certain nondifferentiable kernels with adjusted tails. We demonstrate significant performance gains of these in various numerical experiments.
翻译:贝叶斯推论问题需要取样或近似高维概率分布。 本文的重点是最近采用的斯坦变异梯度下降法, 这是一种在复制Hilbert空间规范方面依赖迭代最陡峭的下降步骤的算法。 这导致粒子系统相互作用, 其平均场限是带有某种几何结构的概率分布空间的梯度流。 我们利用这个观点来说明算法的趋同特性, 特别是解决选择合适的正确定内核函数的问题。 我们的分析引导我们考虑某些与经调整的尾部不区分的内核。 我们在各种数字实验中展示了这些内核的显著性能。