In this paper, we propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention. Current anchor-based monocular 3D object detection methods suffer from feature mismatching. To overcome this, we propose a two-step feature alignment approach. In the first step, the shape alignment is performed to enable the receptive field of the feature map to focus on the pre-defined anchors with high confidence scores. In the second step, the center alignment is used to align the features at 2D/3D centers. Further, it is often difficult to learn global information and capture long-range relationships, which are important for the depth prediction of objects. Therefore, we propose a novel asymmetric non-local attention block with multi-scale sampling to extract depth-wise features. The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset, in both 3D object detection and bird's eye view tasks.


翻译:在本文中,我们建议使用具有特征对齐和不对称非局部关注的单级三维单级物体探测器(M3DSSD)。当前基于锚的单视三维物体探测方法因特征不匹配而受到影响。为了克服这一点,我们建议了两步特征对齐方法。在第一步,进行形状对齐是为了让特征地图的接收字段能够以高置信分侧重于预先定义的锚。在第二步,中心对齐用于对齐 2D/3D 中心的特征。此外,通常很难学习全球信息并捕捉对深度天体预测十分重要的远程关系。因此,我们提出了一个新的非局部不对称注意块,采用多尺度取样来提取深度特征。提议的M3DSDSD在3D 对象探测和鸟类眼视任务中,都取得了大大优于立心3D物体探测方法的性能。

0
下载
关闭预览

相关内容

MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
我这两年的目标检测
极市平台
8+阅读 · 2019年9月18日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
ECCV 2018 | OR-CNN行人检测:为‘遮挡’而生
极市平台
6+阅读 · 2018年9月21日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
12+阅读 · 2019年1月24日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
8+阅读 · 2018年1月12日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关资讯
我这两年的目标检测
极市平台
8+阅读 · 2019年9月18日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
ECCV 2018 | OR-CNN行人检测:为‘遮挡’而生
极市平台
6+阅读 · 2018年9月21日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员