In this study, we investigate the performance of the Metropolis-adjusted Langevin algorithm in a setting with constraints on the support of the target distribution. We provide a rigorous analysis of the resulting Markov chain, establishing its convergence and deriving an upper bound for its mixing time. Our results demonstrate that the Metropolis-adjusted Langevin algorithm is highly effective in handling this challenging situation: the mixing time bound we obtain is superior to the best known bounds for competing algorithms without an accept-reject step. Our numerical experiments support these theoretical findings, indicating that the Metropolis-adjusted Langevin algorithm shows promising performance when dealing with constraints on the support of the target distribution.
翻译:在这项研究中,我们调查了大都会调整的朗埃文算法在限制支持目标分布的环境下的性能。我们对由此形成的马尔科夫链条进行了严格的分析,确定了其趋同,并得出了混合时间的上限。我们的结果表明,大都会调整的朗埃文算法在处理这一具有挑战性的情况方面非常有效:我们获得的混合时间优于最已知的竞争算法的界限,而没有接受和拒绝的步骤。我们的数字实验支持了这些理论结论,表明大都会调整的朗埃文算法在处理支持目标分布的限制时表现良好。