In this paper we propose a time-varying parameter (TVP) vector error correction model (VECM) with heteroskedastic disturbances. We propose tools to carry out dynamic model specification in an automatic fashion. This involves using global-local priors, and postprocessing the parameters to achieve truly sparse solutions. Depending on the respective set of coefficients, we achieve this via minimizing auxiliary loss functions. Our two-step approach limits overfitting and reduces parameter estimation uncertainty. We apply this framework to modeling European electricity prices. When considering daily electricity prices for different markets jointly, our model highlights the importance of explicitly addressing cointegration and nonlinearities. In a forecast exercise focusing on hourly prices for Germany, our approach yields competitive metrics of predictive accuracy.
翻译:在本文中,我们提出了一种具有异方差干扰的时变参数(TVP)向量误差纠正模型(VECM)。我们提出了自动进行动态模型规范化的工具。这包括使用全局-局部先验,并通过最小化辅助损失函数来后处理参数以实现真正的稀疏解。我们的两步方法限制了过度拟合并减少了参数估计不确定性。我们将此框架应用于欧洲电力价格建模。当联合考虑不同市场的每日电力价格时,我们的模型强调了明确的协整和非线性的重要性。在针对德国小时价格的预测练习中,我们的方法产生了有竞争力的预测准确度指标。