We study the iterative refinement of path planning for multiple robots, known as multi-agent pathfinding (MAPF). Given a graph, agents, their initial locations, and destinations, a solution of MAPF is a set of paths without collisions. Iterative refinement for MAPF is desirable for three reasons: 1)~optimization is intractable, 2)~sub-optimal solutions can be obtained instantly, and 3)~it is anytime planning, desired in online scenarios where time for deliberation is limited. Despite the high demand, this is under-explored in MAPF because finding good neighborhoods has been unclear so far. Our proposal uses a sub-optimal MAPF solver to obtain an initial solution quickly, then iterates the two procedures: 1)~select a subset of agents, 2)~use an optimal MAPF solver to refine paths of selected agents while keeping other paths unchanged. Since the optimal solvers are used on small instances of the problem, this scheme yields efficient-enough solutions rapidly while providing high scalability. We also present reasonable candidates on how to select a subset of agents. Evaluations in various scenarios show that the proposal is promising; the convergence is fast, scalable, and with reasonable quality.
翻译:我们研究多机器人路径规划的迭代改进,称为多试剂路由调查(MAPF)。根据图表,代理商、其初始位置和目的地,MAPF的解决方案是一系列没有碰撞的路径。对MAPF的循环改进是可取的,原因有三:(1) 最佳化是棘手的,(2) 可立即获得最佳的解决方案,(2) 最佳的解决方案可以立即获得,和(3) ~ 在考虑时间有限的网上情景下,这是随时需要的规划。尽管需求很高,但MAPF的探索不足,因为找到良好的邻居至今还不清楚。我们的提案使用一个亚最佳MAPF解答器迅速获得初步解决方案,然后将两种程序循环:(1) 选择一个代理器子,(2) 使用最佳的MAPF解答器来改进选定物剂的路径,同时保持其他路径不变。由于最佳的解决方案用于问题的小例子,因此这个计划可以迅速产生高效的解决方案,同时提供高度的可缩放性。我们还提出了如何选择一组代理人的合理候选人。在各种设想中,评估显示建议的质量是可行的,快速的趋同性。