In this paper, we design algorithms to protect swarm-robotics applications against sensor denial-of-service (DoS) attacks on robots. We focus on applications requiring the robots to jointly select actions, e.g., which trajectory to follow, among a set of available ones. Such applications are central in large-scale robotic applications, such as multi-robot motion planning for target tracking. But the current attack-robust algorithms are centralized. In this paper, we propose a general-purpose distributed algorithm towards robust optimization at scale, with local communications only. We name it Distributed Robust Maximization (DRM). DRM proposes a divide-and-conquer approach that distributively partitions the problem among cliques of robots. Then, the cliques optimize in parallel, independently of each other. We prove DRM achieves a close-to-optimal performance. We demonstrate DRM's performance in both Gazebo and MATLAB simulations, in scenarios of active target tracking with swarms of robots. In the simulations, DRM achieves computational speed-ups, being 1-2 orders faster than the centralized algorithms; yet, it nearly matches the tracking performance of the centralized counterparts. Since, DRM overestimates the number of attacks in each clique, in this paper we also introduce an Improved Distributed Robust Maximization (IDRM) algorithm. IDRM infers the number of attacks in each clique less conservatively than DRM by leveraging 3-hop neighboring communications. We verify IDRM improves DRM's performance in simulations.
翻译:在本文中,我们设计了算法,以保护群温机器人应用,防止对机器人的传感器拒绝服务攻击。我们侧重于要求机器人共同选择行动的应用,例如,在一系列可用的应用中,沿轨跟踪。这些应用在大规模机器人应用中是核心的,如多机器人运动规划目标跟踪。但目前的攻击-机器人算法是集中的。在本文中,我们建议一种通用分布算法,在规模上进行强力优化,仅使用当地通信。我们命名它为分散式机械优化(DRM) 。DRM 提出了一种分解式和正弦化方法,分解式地分解机器人的问题。随后,cliques在大规模机器人应用中是核心的。我们证明DRM在目标跟踪中取得了接近于最佳的性能。我们在Gazebo和MATLAB的模拟中展示了DRMM的性能,在机器人的积极目标跟踪中,在模拟中,DRMM的每部的计算速度动作中,我们比RM的中央级的动作要更快。