Recent trends envisage robots being deployed in areas deemed dangerous to humans, such as buildings with gas and radiation leaks. In such situations, the model of the underlying hazardous process might be unknown to the agent a priori, giving rise to the problem of planning for safe behaviour in partially known environments. We employ Gaussian process regression to create a probabilistic model of the hazardous process from local noisy samples. The result of this regression is then used by a risk metric, such as the Conditional Value-at-Risk, to reason about the safety at a certain state. The outcome is a risk function that can be employed in optimal motion planning problems. We demonstrate the use of the proposed function in two approaches. First is a sampling-based motion planning algorithm with an event-based trigger for online replanning. Second is an adaptation to the incremental Gaussian Process motion planner (iGPMP2), allowing it to quickly react and adapt to the environment. Both algorithms are evaluated in representative simulation scenarios, where they demonstrate the ability of avoiding high-risk areas.


翻译:最近的趋势是,机器人部署在被认为对人类有危险的地区,如有气体和辐射泄漏的建筑物。在这种情况下,潜在的危险过程模型可能是代理人事先不知道的,从而导致在部分已知环境中规划安全行为的问题。我们使用高森过程回归法,从当地噪音样品中产生危险过程的概率模型。然后,这种回归的结果被风险指标,如条件值风险值等用于解释某一国家的安全性。结果是一种风险函数,可以在最佳行动规划问题时使用。我们用两种方法展示了拟议功能的使用。首先,我们用基于取样的运动规划算法,以事件触发器为基础,进行在线规划。第二,对递增高斯过程的动作规划器(iGMP2)进行调整,使其能够迅速作出反应并适应环境。两种算法都是在有代表性的模拟假设中加以评估的,它们展示了避免高风险地区的能力。

1
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
4+阅读 · 2021年4月13日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员