Predicting the future motion of traffic agents is crucial for safe and efficient autonomous driving. To this end, we present PredictionNet, a deep neural network (DNN) that predicts the motion of all surrounding traffic agents together with the ego-vehicle's motion. All predictions are probabilistic and are represented in a simple top-down rasterization that allows an arbitrary number of agents. Conditioned on a multilayer map with lane information, the network outputs future positions, velocities, and backtrace vectors jointly for all agents including the ego-vehicle in a single pass. Trajectories are then extracted from the output. The network can be used to simulate realistic traffic, and it produces competitive results on popular benchmarks. More importantly, it has been used to successfully control a real-world vehicle for hundreds of kilometers, by combining it with a motion planning/control subsystem. The network runs faster than real-time on an embedded GPU, and the system shows good generalization (across sensory modalities and locations) due to the choice of input representation. Furthermore, we demonstrate that by extending the DNN with reinforcement learning (RL), it can better handle rare or unsafe events like aggressive maneuvers and crashes.
翻译:预测交通代理器的未来运动对于安全和高效自主驾驶至关重要。 为此,我们展示了SoundionNet,这是一个深度神经网络(DNN),它预测了周围所有交通代理器的动作以及自动汽车的动作。所有预测都是概率性的,并体现在一个简单的自上而下分层化中,允许任意增加代理器的数量。在多层地图上设置了通道信息,网络产生未来位置、速度和回向矢量,所有代理器(包括在单关口的自动车辆)联合运行。然后从输出中提取轨迹。这个网络可以用来模拟现实的交通,并在大众基准上产生竞争性结果。更重要的是,它已经被用来成功地控制数百公里的真实世界车辆,将它与运动规划/控制子集成在一起。这个网络在嵌入的GPU上运行的速度比实时快,并且由于选择了输入代表,这个系统显示出良好的一般化(跨传感器模式和位置 ) 。 此外,我们证明,通过扩展 DNNW系统,可以像强化式的学习(RL) 和不安全的动作,它可以更好地处理。