Given a possibly singular matrix polynomial $P(z)$, we study how the eigenvalues, eigenvectors, root polynomials, minimal indices, and minimal bases of the pencils in the vector space $\mathbb{DL}(P)$ introduced in Mackey, Mackey, Mehl, and Mehrmann [SIAM J. Matrix Anal. Appl. 28(4), 971-1004, 2006] are related to those of $P(z)$. If $P(z)$ is regular, it is known that those pencils in $\mathbb{DL}(P)$ satisfying the generic assumptions in the so-called eigenvalue exclusion theorem are strong linearizations for $P(z)$. This property and the block-symmetric structure of the pencils in $\mathbb{DL}(P)$ have made these linearizations among the most influential for the theoretical and numerical treatment of structured regular matrix polynomials. However, it is also known that, if $P(z)$ is singular, then none of the pencils in $\mathbb{DL}(P)$ is a linearization for $P(z)$. In this paper, we prove that despite this fact a generalization of the eigenvalue exclusion theorem holds for any singular matrix polynomial $P(z)$ and that such a generalization allows us to recover all the relevant quantities of $P(z)$ from any pencil in $\mathbb{DL}(P)$ satisfying the eigenvalue exclusion hypothesis. Our proof of this general theorem relies heavily in the representation of the pencils in $\mathbb{DL} (P)$ via B\'{e}zoutians by Nakatsukasa, Noferini and Townsend [SIAM J. Matrix Anal. Appl. 38(1), 181-209, 2015].
翻译:考虑到一个可能奇数的基质 $P(z) 美元,我们研究的是,如果 $(z) 美元与美元(z) 有关,那么已知 $(mathb{DL}) 中的铅笔和矢量空间中铅笔的最小基数 $\ mathbb{DL}(P) 在Mackey、Mackey、Mehl和Mehrmann[SIAM J. Metrical. Amal. Appl(4)、971-1004,2006] 与美元(z) 有关。如果 $(z) 是正常的,那么知道 $(ma) 的铅笔、 根基数、 根基值和基元值中的美元。 然而,如果 美元(P) 的基数值能满足所谓的 Jegenu(z) 的通用假设值, 那么, 美元(美元) 在普通的基数中, 美元(美元) 的基数的基数(美元) 的基值的基值是总基数(美元) 的底值的底值中, 的基值(美元) 的底的基值的基值的底值的基值是总值的底值的基值。