Composite minimization is a powerful framework in large-scale convex optimization, based on decoupling of the objective function into terms with structurally different properties and allowing for more flexible algorithmic design. We introduce a new algorithmic framework for complementary composite minimization, where the objective function decouples into a (weakly) smooth and a uniformly convex term. This particular form of decoupling is pervasive in statistics and machine learning, due to its link to regularization. The main contributions of our work are summarized as follows. First, we introduce the problem of complementary composite minimization in general normed spaces; second, we provide a unified accelerated algorithmic framework to address broad classes of complementary composite minimization problems; and third, we prove that the algorithms resulting from our framework are near-optimal in most of the standard optimization settings. Additionally, we show that our algorithmic framework can be used to address the problem of making the gradients small in general normed spaces. As a concrete example, we obtain a nearly-optimal method for the standard $\ell_1$ setup (small gradients in the $\ell_{\infty}$ norm), essentially matching the bound of Nesterov (2012) that was previously known only for the Euclidean setup. Finally, we show that our composite methods are broadly applicable to a number of regression and other classes of optimization problems, where regularization plays a key role. Our methods lead to complexity bounds that are either new or match the best existing ones.


翻译:混凝土最小化是大规模 convex 优化的强大框架, 其基础是将目标功能与结构上的不同属性脱钩, 并允许更灵活的算法设计。 我们为互补的复合最小化引入一个新的算法框架, 目标函数分离为( 弱化) 顺利和一致的 convex 术语。 这种特殊的脱钩形式在统计和机器学习中十分普遍, 因为它与正规化的联系。 我们工作的主要贡献概括如下。 首先, 我们引入了在一般规范空间中互补复合复合最小化的混合优化问题; 第二, 我们提供了一个统一的加速算法框架, 以解决各种互为补充的复合最小化问题; 第三, 我们证明我们框架产生的算法在大多数标准优化设置情况下接近最佳。 此外, 我们的算法框架可以用来解决在一般规范空间中缩小梯度的问题。 具体地说, 我们获得了一种接近于标准的 $\ell_ ell_ 1 $ 1美元设置的匹配率( 小梯度在 $\\\ intimfty clas rude) 。 rudeal remailate the the the rual ruild ruil us fal ruild ruild rulest the werum rublest the wermalst thermalst rmals, rmaislviewst lexolfrviolviolviold laphtald led leds) laddd rod lad rviold rviold ladddd rmad rud rops. rupd_ rrrrrrr r_ ladddd rrrrr r r rr r rr____ r_ r_ r_ r_ laddddddddddddddddddddddd r_ r____ r_ r_ r_ r_ r_ r_ r_ rrrrrrrrrrrrrr_ r_ r_ r_ r_ r_

0
下载
关闭预览

相关内容

我们给定x,函数都会输出一个f(X),这个输出的f(X)与真实值Y可能是相同的,也可能是不同的,为了表示拟合的好坏,就用一个函数来度量拟合的程度。这个函数就称为损失函数(loss function),或者叫代价函数(cost function)
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员