The moment of entropy equation for vector-BGK model results in the entropy equation for macroscopic model. However, this is usually not the case in numerical methods because the current literature consists only of entropy conserving/stable schemes for macroscopic model (to the best of our knowledge). In this paper, we attempt to fill this gap by developing an entropy conserving scheme for vector-kinetic model, and we show that the moment of this results in an entropy conserving scheme for macroscopic model. With the numerical viscosity of entropy conserving scheme as reference, the entropy stable scheme for vector-kinetic model is developed in the spirit of [33]. We show that the moment of this scheme results in an entropy stable scheme for macroscopic model. The schemes are validated on several benchmark test problems for scalar and shallow water equations, and conservation/stability of both kinetic and macroscopic entropies are presented.
翻译:矢量- BGK 模型的倍增方程式时刻使宏scopic 模型的倍增方程式产生宏球模型的倍增方程式结果。然而,在数字方法中,通常不是这样,因为目前的文献仅包括宏scospic模型(据我们所知的最好情况)的酶保护/稳定方案。在本文件中,我们试图通过为矢量-感知模型开发一个酶保护方案来填补这一空白,并且我们展示了这一时刻的结果,即宏球模型的酶保护方案。以昆虫保护方案的数字粘度为参照,矢量动力-动力模型的酶稳定方案是本着[33]的精神制定的。我们显示,这一办法的瞬间将形成一个宏球模型的酶稳定方案。根据一些标准测试问题,对斜度和浅水方程式进行了验证,并介绍了动量和宏孔的寄生虫的保存/可操作性。