We show that for any $\alpha>0$ the R\'enyi entropy of order $\alpha$ is minimized, among all symmetric log-concave random variables with fixed variance, either for a uniform distribution or for a two sided exponential distribution. The first case occurs for $\alpha \in (0,\alpha^*]$ and the second case for $\alpha \in [\alpha^*,\infty)$, where $\alpha^*$ satisfies the equation $\frac{1}{\alpha^*-1}\log \alpha^*= \frac12 \log 6$, that is $\alpha^* \approx 1.241$. Using those results, we prove that one-sided exponential distribution minimizes R\'enyi entropy of order $\alpha \geq 2$ among all log-concave random variables with fixed variance.


翻译:我们显示,对于任何$alpha>0美元,R\'enyi entropy, $\ alpha$, 在所有具有固定差异的对称对数对数对数随机变数中, 无论是统一分布还是两个侧面指数分布, 都尽量减少R\'enyi entropy $\ alpha>0美元( 0,\ alpha ⁇,\ inty) 和第二个情况[\ alpha,\ fty]$, 其中, $\alpha\\ $满足公式$\frac{1, halpha\\\\\\\\\ lapha\\\\\\\ frac12\log 6美元, 即$\ alpha\\ approx 1. 241美元。使用这些结果, 我们证明, 单面指数分布将所有有固定差异的log- cocave 随机变数的R\'enpyenpy uny pordy $ $\ e 2$ ge 2$。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2020年1月6日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月25日
Learning to Importance Sample in Primary Sample Space
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
4+阅读 · 2020年1月6日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员