Optimizing highly complex cost/energy functions over discrete variables is at the heart of many open problems across different scientific disciplines and industries. A major obstacle is the emergence of many-body effects among certain subsets of variables in hard instances leading to critical slowing down or collective freezing for known stochastic local search strategies. An exponential computational effort is generally required to unfreeze such variables and explore other unseen regions of the configuration space. Here, we introduce a quantum-inspired family of nonlocal Nonequilibrium Monte Carlo (NMC) algorithms by developing an adaptive gradient-free strategy that can efficiently learn key instance-wise geometrical features of the cost function. That information is employed on-the-fly to construct spatially inhomogeneous thermal fluctuations for collectively unfreezing variables at various length scales, circumventing costly exploration versus exploitation trade-offs. We apply our algorithm to two of the most challenging combinatorial optimization problems: random k-satisfiability (k-SAT) near the computational phase transitions and Quadratic Assignment Problems (QAP). We observe significant speedup and robustness over both specialized deterministic solvers and generic stochastic solvers. In particular, for 90% of random 4-SAT instances we find solutions that are inaccessible for the best specialized deterministic algorithm known as Survey Propagation (SP) with an order of magnitude improvement in the quality of solutions for the hardest 10% instances. We also demonstrate two orders of magnitude improvement in time-to-solution over the state-of-the-art generic stochastic solver known as Adaptive Parallel Tempering (APT).


翻译:在离散的变量上优化高度复杂的成本/能源功能是不同科学学科和行业许多程度的公开问题的核心所在。一个主要障碍是,在困难情况下,某些子类变量中出现许多体形效应,导致已知的随机本地搜索战略出现严重减慢或集体冻结。通常需要指数计算努力来解冻这些变量并探索配置空间的其他隐蔽区域。在这里,我们通过制定适应性梯度的无梯度计算法,从而能够有效地学习成本函数中关键实例的几何性特征。信息在飞行中被用于构建空间性不均匀的热波动,以在不同的长度范围内集体解冻变量,绕过昂贵的勘探和开发交易。我们运用我们的算法来应对两个最具挑战性的组合优化问题:在计算阶段附近的宽度平衡(k-SAT)算法(k-SAT),通过制定适应性梯度的升级法改进方法(QAP),我们观测到在标准化的中,在标准化的中,在标准化的慢度-萨洛特-萨洛特-萨洛特-卡(Scrmal-comlistal-ral-comlist)中,我们所知道的10个最难解解的解的解的解的路径中,也是特定的10个特定的解算。

0
下载
关闭预览

相关内容

【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员