With the rapid expansion of graphs and networks and the growing magnitude of data from all areas of science, effective treatment and compression schemes of context-dependent data is extremely desirable. A particularly interesting direction is to compress the data while keeping the "structural information" only and ignoring the concrete labelings. Under this direction, Choi and Szpankowski introduced the structures (unlabeled graphs) which allowed them to compute the structural entropy of the Erd\H{o}s--R\'enyi random graph model. Moreover, they also provided an asymptotically optimal compression algorithm that (asymptotically) achieves this entropy limit and runs in expectation in linear time. In this paper, we consider the Stochastic Block Models with an arbitrary number of parts. Indeed, we define a partitioned structural entropy for Stochastic Block Models, which generalizes the structural entropy for unlabeled graphs and encodes the partition information as well. We then compute the partitioned structural entropy of the Stochastic Block Models, and provide a compression scheme that asymptotically achieves this entropy limit.


翻译:随着图表和网络的迅速扩展以及来自科学各个领域的数据的日益庞大,根据背景数据的有效处理和压缩计划是极为可取的。一个特别有趣的方向是压缩数据,同时只保留“结构信息”而忽略混凝土标签。在此方向下,Choi和Szpankowski引入了结构(无标签图),允许他们计算Erd\H{o}s-R\'enyi随机图模型的结构酶。此外,它们还提供了一种(暂时的)达到这种酶限值并在线性时间内运行的无症状最佳压缩算法。在本文中,我们考虑具有任意性部分的斯托切区模型。事实上,我们为斯托切克区模型定义了一种隔绝结构酶(无标签图),对分区信息进行普通化。我们随后对托切式模型的隔置结构酶模型进行了(隔置式)最佳算法,并提供了一种可实现这一限制的压缩方案。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
40+阅读 · 2020年3月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月27日
Arxiv
0+阅读 · 2022年1月27日
Arxiv
1+阅读 · 2022年1月25日
Arxiv
6+阅读 · 2021年6月4日
Arxiv
7+阅读 · 2018年3月22日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
40+阅读 · 2020年3月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员