With the good performance of deep learning algorithms in the field of computer vision (CV), the convolutional neural network (CNN) architecture has become a main backbone of the computer vision task. With the widespread use of mobile devices, neural network models based on platforms with low computing power are gradually being paid attention. However, due to the limitation of computing power, deep learning algorithms are usually not available on mobile devices. This paper proposes a lightweight convolutional neural network, TripleNet, which can operate easily on Raspberry Pi. Adopted from the concept of block connections in ThreshNet, the newly proposed network model compresses and accelerates the network model, reduces the amount of parameters of the network, and shortens the inference time of each image while ensuring the accuracy. Our proposed TripleNet and other state-of-the-art (SOTA) neural networks perform image classification experiments with the CIFAR-10 and SVHN datasets on Raspberry Pi. The experimental results show that, compared with GhostNet, MobileNet, ThreshNet, EfficientNet, and HarDNet, the inference time of TripleNet per image is shortened by 15%, 16%, 17%, 24%, and 30%, respectively. The detail codes of this work are available at https://github.com/RuiyangJu/TripleNet.


翻译:由于计算机视觉(CV)领域深层学习算法的良好表现,进化神经网络(CNN)架构已成为计算机视觉任务的主要支柱。随着移动设备的广泛使用,基于低计算功率平台的神经网络模型逐渐得到重视。然而,由于计算能力的限制,移动设备通常无法提供深层次学习算法。本文提议建立一个轻量的进化神经网络TripleNet,这个网络可以在Raspberry Pi上轻松运作。根据ThreshNet的区块连接概念,新提议的网络模型压缩器和加速网络模型,减少网络参数的数量,缩短每个图像的推断时间,同时确保准确性。我们提议的TripleNet和其他最先进的神经网络(SOTA)网络与CIFAR-10和SVHN在Raspberry Pi上的数据集进行图像分类实验。实验结果显示,与GhostNet、MiveNet、TreshNet、节节能网络和HarDNet相比,新提议的网络减少了网络的参数,减少了网络的参数数量,缩短了每个图像的精确度为15%/Tribeble/

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员