Variational Auto-Encoder (VAE) has been widely adopted in text generation. Among many variants, recurrent VAE learns token-wise latent variables with each conditioned on the preceding ones, which captures sequential variability better in the era of RNN. However, it is unclear how to incorporate such recurrent dynamics into the recently dominant Transformer due to its parallelism. In this work, we propose TRACE, a Transformer-based recurrent VAE structure. TRACE imposes recurrence on segment-wise latent variables with arbitrarily separated text segments and constructs the posterior distribution with residual parameterization. Besides, we design an acceleration method by approximating idempotent matrices, which allows parallelism while maintaining the conditional dependence of latent variables. We demonstrate that TRACE could enhance the entanglement of each segment and preceding latent variables and deduce a non-zero lower bound of the KL term, providing a theoretical guarantee of generation diversity. Experiments on two unconditional and one conditional generation tasks show that TRACE achieves significantly improved diversity while maintaining satisfactory generation quality.
翻译:在文本生成中广泛采用变式自动编码器(VAE) 。 在许多变式中, 经常的 VAE 学习以前一种为条件的象征性潜在变量, 以前一种为条件, 更好地捕捉RNN时代的相继变异性。 但是, 尚不清楚如何将这种重复动态纳入最近占主导地位的变异器, 因为它是平行的。 在这项工作中, 我们提议以变换器为基础的VAE 结构 TRACE 。 TRACE 强制对含有任意分离的文本部分的分部分潜在变量进行复发, 并用剩余参数构建后方分布 。 此外, 我们设计了一种代代用备用能力矩阵加速方法, 允许平行同时保持潜在变量的有条件依赖性 。 我们证明TRACE 能够加强每个部分和前几个潜在变异体的缠绕线, 并推导出 KL 术语的非零下界, 为生成多样性提供理论上的保证 。 在两个无条件和一个有条件的生成任务上进行的实验表明TRACE 实现显著的多样化, 同时保持令人满意的一代质量 。