Generating text with autoregressive language models (LMs) is of great importance to many natural language processing (NLP) applications. Previous solutions for this task often produce text that contains degenerative expressions or lacks semantic consistency. Recently, Su et al. introduced a new decoding method, contrastive search, based on the isotropic representation space of the language model and obtained new state of the art on various benchmarks. Additionally, Su et al. argued that the representations of autoregressive LMs (e.g. GPT-2) are intrinsically anisotropic which is also shared by previous study. Therefore, to ensure the language model follows an isotropic distribution, Su et al. proposed a contrastive learning scheme, SimCTG, which calibrates the language model's representations through additional training. In this study, we first answer the question: "Are autoregressive LMs really anisotropic?". To this end, we extensively evaluate the isotropy of LMs across 16 major languages. Surprisingly, we find that the anisotropic problem only exists in the two specific English GPT-2-small/medium models. On the other hand, all other evaluated LMs are naturally isotropic which is in contrast to the conclusion drawn by previous studies. Based on our findings, we further assess the contrastive search decoding method using off-the-shelf LMs on four generation tasks across 16 languages. Our experimental results demonstrate that contrastive search significantly outperforms previous decoding methods without any additional training. More notably, on 12 out of 16 evaluated languages, contrastive search performs comparably with human-level performances as judged by human evaluations.
翻译:以自动递减语言模型(LMS) 生成文本对于许多自然语言处理(NLP)应用程序非常重要。 先前的任务解决方案往往产生含有退化表达式或缺乏语义一致性的文本。 最近, Su等人等人根据语言模型的异向代表空间引入了新的解码方法, 对比搜索, 并以语言模型的异向代表空间为基础, 在各种基准上获得了新的艺术状态。 此外, Su等人认为, 自动递增语言模型( e. g. GPT-2) 的表达方式本质上是反动的, 先前的研究也分享了这种反向分析。 因此, 为确保语言模型遵循异向搜索的分布, Su等人提出了对比学习方案, SimCTG, 通过额外的培训校准语言模型的表达方式。 我们首先回答一个问题: “ 自动递增 LMS( 真正是反向异向的) ” 问题。 我们从16种主要语言的LMS( 如GPT) 进一步评估 LMS- 的偏向外偏向外偏向外偏向外的反向。 我们发现, 我们的反向分析问题仅在两个实验性分析了我们之前的模拟的模拟研究基础, 以不同的方法评估了我们之前的16种方法, 的模拟的模拟的模拟的模拟的模拟分析是原始的模拟的, 以过去的模拟的模拟的模拟的模拟的模拟的反向后演算法 。