We propose a deep learning method for the numerical solution of partial differential equations that arise as gradient flows. The method relies on the Brezis--Ekeland principle, which naturally defines an objective function to be minimized, and so is ideally suited for a machine learning approach using deep neural networks. We describe our approach in a general framework and illustrate the method with the help of an example implementation for the heat equation in space dimensions two to seven.
翻译:我们建议了一种深层次的学习方法,用于计算作为梯度流产生的部分差异方程式的数值。该方法依靠Brezis-Ekeland原则,该原则自然地界定了要尽量缩小的客观功能,因此最适宜于使用深层神经网络的机器学习方法。我们用一个总体框架描述我们的方法,并用一个范例来说明在二至七维空间的热方程式实施的方法。