The hull of a linear code is the intersection of itself with its dual code with respect to certain inner product. Both Euclidean and Hermitian hulls are of theorical and practical significance. In this paper, we construct several new classes of MDS codes via (extended) generalized Reed-Solomon (GRS) codes and determine their Euclidean or Hermitian hulls. Specifically, four new classes of MDS codes with Hermitian hulls of flexible dimensions and six new classes of MDS codes with Euclidean hulls of flexible dimensions are constructed. For the former, we further construct four new classes of entanglement-assisted quantum error-correcting codes (EAQECCs) and four new classes of MDS EAQECCs of length $n>q+1$. For the latter, we also give some examples on Euclidean self-orthogonal and one-dimensional Euclidean hull MDS codes.
翻译:线性编码的船体与某些内产物的双重编码相互交错,欧几里德和赫米特船体都具有理论和实践意义,在本文件中,我们通过(扩展的)通用Reed-Solomon(GRS)编码建造了几类新的MDS编码,并确定其Euclidean或Hermitian船体。具体地说,我们建造了四类与埃米特船体的灵活尺寸的MDS编码,以及六类与欧几里德船体的灵活尺寸的MDS编码。关于前者,我们进一步建造了四类新的缠绕辅助量子更正编码(EAQECCs)和四类长度为$>q+1美元的MDS EAQECCs。关于后者,我们还举了一些欧几类关于欧三里德自体和一维欧几里德船体的MDS编码的例子。