In this article, we pursue our investigation of the connections between the theory of computation and hydrodynamics. We prove the existence of stationary solutions of the Euler equations in Euclidean space, of Beltrami type, that can simulate a universal Turing machine. In particular, these solutions possess undecidable trajectories. Heretofore, the known Turing complete constructions of steady Euler flows in dimension 3 or higher were not associated to a prescribed metric. Our solutions do not have finite energy, and their construction makes crucial use of the non-compactness of $\mathbb R^3$, however they can be employed to show that an arbitrary tape-bounded Turing machine can be robustly simulated by a Beltrami flow on $\mathbb T^3$ (with the standard flat metric). This shows that there exist steady solutions to the Euler equations on the flat torus exhibiting dynamical phenomena of (robust) computational complexity as high as desired. We also quantify the energetic cost for a Beltrami field on $\mathbb T^3$ to simulate a tape-bounded Turing machine, thus providing additional support for the space-bounded Church-Turing thesis. Another implication of our construction is that a Gaussian random Beltrami field on Euclidean space exhibits arbitrarily high computational complexity with probability $1$. Finally, our proof also yields Turing complete flows and diffeomorphisms on $\mathbb{S}^2$ with zero topological entropy, thus disclosing a certain degree of independence within different hierarchies of complexity.
翻译:在此篇文章中, 我们继续调查计算理论与流体动力学之间的联系。 我们证明在Euclidean空间的Euler 方程式存在固定的解决方案, 它可以模拟通用图灵机器。 特别是, 这些解决方案具有不可改变的轨迹。 已知的图灵在维度3或以上稳定的 Euler 流的完整构造与规定的度量无关。 我们的解决方案没有一定的能量, 其构建对不兼容的 $mathbbl 高清晰度R3值至关重要, 但是它们可以用来显示任意粘贴图灵机的固定式解决方案, 可以由以 $\mathbt T ⁇ 3 的 通用图灵机模拟。 这显示, 平面上的 Euler 方方方程的构造有稳定的解决方案, 显示( robrbettr) 计算复杂度的完整度, 并按所期望的那样高清晰度计算。 我们还量化了在 $\mathblexrideal ral R3 中, 一个任意的图灵的图灵的机器, 可以强有力地模拟地显示, 我们的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平流。