Data-driven hourly weather forecasting models often face the challenge of error accumulation in long-term predictions. The problem is exacerbated by non-physical temporal discontinuities present in widely-used training datasets such as ECMWF Reanalysis v5 (ERA5), which stem from its 12-hour assimilation cycle. Such artifacts lead hourly autoregressive models to learn spurious dynamics and rapidly accumulate errors. To address this, we introduce FlowCast-ODE, a novel framework that treats atmospheric evolution as a continuous flow to ensure temporal coherence. Our method employs dynamic flow matching to learn the instantaneous velocity field from data and an ordinary differential equation (ODE) solver to generate smooth and temporally continuous hourly predictions. By pre-training on 6-hour intervals to sidestep data discontinuities and fine-tuning on hourly data, FlowCast-ODE produces seamless forecasts for up to 120 hours with a single lightweight model. It achieves competitive or superior skill on key meteorological variables compared to baseline models, preserves fine-grained spatial details, and demonstrates strong performance in forecasting extreme events, such as tropical cyclone tracks.
翻译:暂无翻译